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Abstract—In healthcare systems, safeguarding machine 

learning (ML) models from adversarial threats while 

preserving data privacy is crucial. Federated Learning (FL) 

allows institutions to collaboratively train models without 

sharing sensitive patient data, offering a privacy-preserving 

solution. However, FL remains susceptible to poisoning 

attacks, where adversaries inject malicious data to compromise 

model performance. To address this, a robust framework that 

integrates blockchain technology with Secure Multi-Party 

Computation (SMPC) is proposed to enhance model security 

and verification. Blockchain provides a decentralized, 

immutable ledger that ensures transparency, accountability, 

and traceability of model updates. It prevents tampering by 

securely recording each participant’s contributions in the FL 

process. SMPC further enhances security by enabling 

participants to collaboratively compute global model 

parameters without exposing individual data. This combined 

approach ensures that model updates remain encrypted and 

verifiable, preventing unauthorized access or manipulation. 

The method enhances the detection and prevention of 

poisoning attacks by validating and securely aggregating model 

updates before inclusion in the global model. Experimental 

evaluations on healthcare datasets demonstrate that this 

system improves model robustness, accuracy, and 

trustworthiness. This novel framework provides a highly 

secure, privacy-preserving solution for federated learning in 

healthcare, ensuring data integrity, model reliability, and 

resilience against adversarial attacks. 
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I. INTRODUCTION 

The integration of blockchain technology within 
healthcare systems has emerged as a pivotal innovation 
aimed at enhancing data security, privacy, and 
interoperability. As healthcare increasingly relies on digital 
platforms for managing sensitive patient information, the 
potential vulnerabilities associated with data breaches and 
unauthorized access have become paramount concerns. 
Blockchain, characterized by its decentralized and immutable 
nature, offers a robust framework that can address these 
challenges effectively [1][2][3]. By facilitating secure data 
sharing and ensuring the integrity of electronic health records 
(EHRs), blockchain technology presents a transformative 
opportunity to safeguard patient data against malicious 
attacks, including poisoning attacks that can compromise the 
integrity of federated learning systems [4][5]. 

Federated learning, a machine learning paradigm that 
enables collaborative model training without centralizing 
data, is particularly susceptible to various security threats, 

including data poisoning. In healthcare, where data integrity 
is crucial for accurate diagnostics and treatment, the 
implications of such attacks can be dire. The incorporation of 
blockchain technology into federated learning frameworks 
can mitigate these risks by providing a transparent and 
verifiable ledger of transactions, thereby enhancing trust 
among participating entities [6][7]. This synergy not only 
fortifies the security of healthcare data but also promotes a 
more patient-centric approach to data management, where 
patients retain control over their health information while 
benefiting from advanced analytics and machine learning 
capabilities [8][9]. 

Moreover, the implementation of permissioned 
blockchain systems, as opposed to public block chains, 
further enhances security by restricting access to authorized 
participants only. This is particularly relevant in healthcare 
settings where sensitive data must be protected from 
unauthorized access while still allowing for necessary data 
sharing among healthcare providers [1][6][10]. The potential 
for blockchain to streamline interoperability across disparate 
healthcare systems is also noteworthy, as it can facilitate 
seamless data exchange while maintaining stringent security 
protocols [11][12]. Thus, the intersection of secure 
blockchain technology and federated learning not only 
addresses the immediate threats posed by data poisoning but 
also lays the groundwork for a more resilient and efficient 
healthcare ecosystem. 

In conclusion, the adoption of secure blockchain 
federated learning in healthcare systems represents a 
significant advancement in the fight against data breaches 
and integrity threats. By leveraging the unique properties of 
blockchain, healthcare organizations can enhance the 
security and privacy of patient data while fostering a 
collaborative environment for data-driven innovations. This 
approach not only protects against current threats but also 
positions the healthcare sector to better adapt to future 
challenges in data management and security. 

II. RELATED WORKS 

The advent of blockchain technology has sparked 

significant interest in its application within the healthcare 

sector, primarily due to its potential to enhance data security, 

interoperability, and patient privacy. A systematic review by 

Agbo et al. highlights the multifaceted benefits of blockchain 

in healthcare, emphasizing its ability to create secure and 

immutable records, thereby addressing critical issues related 

to data integrity and unauthorized access Agbo et al. [13]. 

The decentralized nature of blockchain allows for a more 

patient-centric approach to data management, where 

individuals can have greater control over their health 
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information while ensuring that sensitive data is securely 

shared among authorized parties [14]. 

Moreover, the integration of blockchain with health 

information exchanges (HIE) has been identified as a 

promising avenue for improving data sharing practices 

among healthcare providers. Drosatos and Kaldoudi's 

scoping review indicates that blockchain can facilitate the 

creation of patient record ledgers that are accessible across 

various healthcare providers, thus enabling a comprehensive 

view of a patient's medical history [15]. This capability is 
crucial in addressing the fragmentation of health records, 

which often leads to inefficiencies and potential errors in 

patient care [16]. Furthermore, the implementation of 

blockchain technology can mitigate risks associated with 

data breaches, as it employs cryptographic techniques to 

secure health information, thereby enhancing overall data 

privacy [17]. 

Despite the promising prospects, the adoption of 

blockchain in healthcare is not without challenges. Issues 

such as scalability, regulatory compliance, and the need for 

standardized protocols remain significant barriers to 
widespread implementation [18] [19]. For instance, while 

blockchain can enhance security, the complexity of its 

architecture may lead to increased transaction times, which 

can hinder its effectiveness in real-time healthcare 

applications [20]. Additionally, healthcare organizations 

must navigate the ethical implications of using blockchain, 

particularly concerning patient consent and data ownership 

[21]. 

Recent literature also emphasizes the importance of 

interoperability in the successful deployment of blockchain 

technology in healthcare. Aljabri's systematic review 

underscores the need for blockchain systems to be 
compatible with existing healthcare infrastructures to 

facilitate seamless data exchange [18]. This interoperability 

is vital for ensuring that blockchain can effectively integrate 

with various health information systems and support 

collaborative care models [22]. 

III. METHODOLOGY 

The proposed methodology focuses on integrating 
blockchain technology with Secure Multi-Party Computation 
(SMPC) to create a robust and privacy-preserving federated 
learning framework for healthcare systems. The framework 
is designed to address vulnerabilities in federated learning, 
particularly susceptibility to poisoning attacks, while 
ensuring that sensitive patient data remains secure. 
Blockchain provides a decentralized, immutable ledger for 
recording model updates, ensuring transparency and 
accountability throughout the training process. Meanwhile, 
SMPC enables secure computation of global model 
parameters by encrypting contributions from each 
participant, preserving data privacy. Together, these 
technologies form a comprehensive defense mechanism that 
prevents data tampering and ensures the integrity of the 
global model, while also facilitating effective detection and 
mitigation of adversarial attacks.  

A. System Architecture 

The proposed system architecture integrates blockchain, 

federated learning (FL), and Secure Multi-Party 

Computation (SMPC) to enhance security, privacy, and 

model robustness in healthcare environments. The 

framework enables multiple healthcare institutions to 

collaboratively train machine learning models without 

exposing sensitive patient data. Each participant performs 

local model training on its private dataset, and only the 

model updates (not the data itself) are shared. These updates 

are encrypted and then sent for secure aggregation using 

SMPC. The aggregated model is stored on a blockchain, 

ensuring transparency, traceability, and tamper-resistant 

validation of contributions. 

1) Blockchain 
Blockchain acts as a decentralized ledger, recording all 

model updates and verification steps in a secure and 
immutable manner. Each block contains encrypted model 
parameters and cryptographic signatures, ensuring that 
updates are auditable and preventing tampering. The 
consensus mechanism ensures that only validated and trusted 
model updates are added to the global model, enhancing 
security. 

2) Federated Learning (FL) 
FL allows participants to collaboratively train a machine 

learning model without sharing raw data. Each participant 
trains a local model using their own dataset, and only model 
gradients or parameters are shared. This decentralized 
approach helps maintain data privacy, as sensitive 
information never leaves the local environment. 

3) Secure Multi-Party Computation (SMPC) 
SMPC ensures that participants can jointly compute a 

global model by securely aggregating their encrypted local 
model updates. The use of SMPC guarantees that no 
participant can infer the data of others during the 
computation process. This prevents data leakage and ensures 
that privacy is maintained throughout the learning process. 

 

Fig. 1. Architecture of the proposed model 

B. Data Privacy and Security Mechanisms 

1) Data Partitioning and Local Model Training 
In the proposed framework, data privacy is preserved 

through federated learning, where each healthcare institution 
retains its own patient data locally. Instead of sharing raw 
data, participants partition their datasets and independently 
train local machine learning models. These models are 
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trained on institution-specific data, ensuring that sensitive 
patient information is never exposed or transmitted to other 
parties. Once local training is complete, only the model 
updates (such as gradients or weights) are shared for 
aggregation. This decentralized approach protects patient 
privacy and complies with data protection regulations, such 
as HIPAA or GDPR. 

2) Use of SMPC for Secure Computation 
Secure Multi-Party Computation (SMPC) is employed to 

further protect the confidentiality of model updates. SMPC 
enables participants to jointly compute the global model by 
aggregating their encrypted updates without revealing any 
individual model’s information. Each participant encrypts 
their local model parameters before sharing them, and the 
aggregation is performed on the encrypted data. The SMPC 
protocol ensures that no participant can access or infer the 
others' data contributions during the computation. This 
guarantees that model updates are securely aggregated, and 
the global model is computed without compromising 
privacy. 

3) Encryption and Privacy-Preserving Techniques 
Encryption plays a critical role in ensuring the 

confidentiality of the data exchanged during the federated 
learning process. Before sharing model updates, participants 
encrypt their data using advanced cryptographic techniques, 
such as homomorphic encryption or secret sharing, to ensure 
that updates remain private. These privacy-preserving 
techniques prevent unauthorized access or inference attacks 
on the shared model parameters. Additionally, differential 
privacy can be applied to further enhance security by adding 
noise to the model updates, making it difficult to reverse-
engineer the original data. This multi-layered approach 
ensures robust privacy protection throughout the entire 
learning process. 

C. Blockchain Integration for Model Verification 

1) Decentralized Ledger Design 
The proposed framework leverages a decentralized ledger 

design through blockchain technology to enhance model 
verification and integrity. This design ensures that all 
participants have access to the same immutable record of 
model updates, promoting transparency and trust among 
stakeholders. Each transaction recorded on the blockchain 
represents a model update, complete with timestamps and 
cryptographic signatures that authenticate the source. By 
distributing the ledger across all participants, the framework 
eliminates single points of failure, making it resilient against 
tampering and ensuring that the model's integrity can be 
verified by all parties involved. 

2) Recording and Validating Model Updates 
Model updates are recorded on the blockchain in a 

structured manner, ensuring that each update is linked to the 
corresponding participant's cryptographic identity. This 
approach not only provides a clear audit trail but also enables 
real-time validation of contributions. When a participant 
submits a model update, it is hashed and added to a new 
block on the blockchain. The system employs cryptographic 
algorithms to verify the authenticity of each update before it 
is recorded. This validation process ensures that only 
legitimate and approved updates are incorporated into the 
global model, safeguarding against unauthorized 

modifications and enhancing the overall reliability of the 
federated learning process. 

3) Consensus Mechanism for Secure Model Aggregation 
To maintain the integrity of the model updates, the 

framework employs a consensus mechanism that ensures all 
participants agree on the state of the blockchain before any 
new updates are added. This mechanism can utilize various 
algorithms, such as Proof of Stake (PoS) or Practical 
Byzantine Fault Tolerance (PBFT), to reach a consensus on 
the validity of model updates. Once consensus is achieved, 
the model updates are securely aggregated and committed to 
the blockchain. This process not only enhances the security 
of model aggregation but also ensures that all stakeholders 
are in agreement, thereby fostering a collaborative 
environment that mitigates the risk of adversarial attacks. 
Through this robust consensus mechanism, the framework 
maintains the integrity and accuracy of the global model 
while providing a transparent record of all contributions. 

D. Poisoning Attack Detection and Prevention 

1) Adversarial Threat Model 
In the context of the proposed framework, the adversarial 

threat model encompasses various types of poisoning attacks 
that target the federated learning process. These attacks can 
occur when malicious participants deliberately introduce 
harmful data into the training process to degrade the overall 
model performance or manipulate its behavior. The model is 
particularly vulnerable to these attacks due to the 
decentralized nature of federated learning, where updates 
from multiple participants are aggregated without strict 
oversight. This section defines the potential threat vectors, 
including data injection, model manipulation, and collusion 
among adversaries, and emphasizes the need for a 
comprehensive detection and prevention strategy. 

2) Methods for Detecting Malicious Data Contributions 
To identify malicious data contributions, the framework 

incorporates several detection methods aimed at monitoring 
and analyzing model updates from participants. These 
methods include anomaly detection algorithms that assess 
the statistical properties of model updates, identifying 
deviations from expected behavior. Techniques such as 
clustering and outlier detection can also be utilized to flag 
suspicious updates that may indicate poisoning attempts. 
Additionally, implementing a reputation-based system can 
help evaluate the trustworthiness of participants based on 
their historical contributions, allowing for the identification 
of potentially malicious actors before they compromise the 
model. 

3) Techniques to Prevent and Mitigate Poisoning 

Attacks 
To prevent and mitigate the impact of poisoning attacks, 

the framework employs a combination of proactive and 
reactive techniques. Proactively, it implements robust 
aggregation methods that reduce the influence of outlier 
updates, such as trimming or weighted aggregation based on 
participant reputation. These methods ensure that the final 
model remains resilient against potentially harmful 
contributions. Reactively, the framework includes 
mechanisms for incident response, such as reverting to a 
previous stable model version if a poisoning attack is 
detected. Regular audits of model performance and 
contributions, combined with continuous monitoring, allow 
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for swift identification and remediation of attacks. Together, 
these techniques create a multi-layered defense system that 
enhances the robustness and reliability of the federated 
learning process in healthcare environments. 

E. Secure Aggregation of Model Updates 

1) SMPC Protocol for Secure Aggregation 
The proposed framework utilizes Secure Multi-Party 

Computation (SMPC) to enable secure aggregation of model 
updates from multiple participants. The SMPC protocol 
allows participants to collaboratively compute the global 
model parameters while keeping their individual 
contributions private. During this process, each participant 
encrypts their local model updates using a predetermined 
cryptographic method, ensuring that only the aggregated 
result is revealed. The protocol allows for computations to be 
performed on encrypted data, thus preventing any participant 
from accessing the unencrypted contributions of others. By 
utilizing SMPC, the framework enhances the security of the 
aggregation process and mitigates the risks associated with 
data leakage. 

2) Steps for Encryption and Decryption 
The encryption process involves several key steps to 

ensure that model updates remain confidential throughout the 
aggregation process. Initially, each participant applies a 
homomorphic encryption scheme or a secret-sharing method 
to their local model updates. This transforms the data into an 
encrypted format that can be securely shared. Participants 
then send their encrypted updates to a designated aggregator, 
which performs the necessary computations on the encrypted 
data. The aggregation process involves combining the 
encrypted updates to produce a single aggregated result. 
Once the aggregation is complete, the aggregator sends the 
resulting encrypted model parameters back to the 
participants. Finally, each participant decrypts the aggregated 
result using their decryption keys, enabling them to obtain 
the updated global model parameters without revealing their 
individual contributions. 

3) Ensuring Accuracy and Integrity of the Global Model 
To ensure the accuracy and integrity of the global model, 

the framework implements several validation mechanisms 
throughout the aggregation process. First, before the 
aggregation begins, participants are required to verify the 
integrity of the received updates using digital signatures, 
which authenticate the source of the updates. Additionally, 
the aggregation function is designed to be resilient against 
potential poisoning attacks, employing robust techniques 
such as trimmed mean or median aggregation to minimize 
the impact of outlier updates. After the aggregation, the 
updated global model undergoes a validation process where 
its performance is evaluated against a predefined set of 
metrics. This validation ensures that the new model 
parameters maintain or improve upon the model's accuracy. 
By implementing these measures, the framework guarantees 
that the final global model is both accurate and resilient, 
thereby upholding the trustworthiness of the federated 
learning process. 

F. Experimental Setup Datasets and Evaluation Metrics 

The experimental setup employs diverse healthcare 
datasets, including real-world patient records, medical 
imaging, and clinical trial data, to evaluate the proposed 
federated learning framework's effectiveness. These datasets 

are partitioned among multiple participants to simulate a 
federated learning environment, with evaluation metrics 
encompassing accuracy, precision, recall, F1-score, and 
robustness against poisoning attacks, as well as metrics for 
model convergence and computational efficiency. The 
implementation is developed in Python, utilizing libraries 
such as TensorFlow and PyTorch for model training, 
PyCryptodome for encryption, and Hyper Ledger Fabric for 
the blockchain component, which ensures a permissioned 
environment suitable for healthcare applications. The 
experimental testbed mimics a decentralized healthcare 
system, consisting of multiple nodes that represent different 
institutions, each configured with specific hardware and 
network parameters, such as bandwidth limitations and 
latency simulations. This comprehensive setup facilitates 
rigorous testing of the framework’s performance, scalability, 
and resilience against adversarial attacks while ensuring 
secure aggregation of model updates. 

G. System Architecture 

1) Blockchain Layer 
Decentralized Ledger: All model modifications are 

recorded in a decentralized, immutable ledger using a 
blockchain. Every healthcare organization that takes part 
functions as a node in a blockchain network. 

Smart Contracts: The submission, verification, and 
aggregation of model updates are handled using smart 
contracts. They streamline the verification process and make 
sure everything is open and honest. 

2) Federated Learning Layer 
Local Training: A local model is trained on data from 

each healthcare entity. As a result, private patient 
information will remain on the premises of the company. 

    Model Updates: The process begins with local training, 
and afterward, every entity changes its model and adds it to 
the blockchain. 

3) SMPC Layer 
Secure Aggregation: Safely aggregating model updates 

from several sources is the goal of SMPC protocols. This 
allows for the calculation of a global model while ensuring 
that individual modifications stay secret. 

Privacy Preservation: Ensuring data privacy, the 
aggregation procedure prevents any one entity from 
deducing other people's data. 

H. Data Collection and Preprocessing 

1) Data Sources 
Gather healthcare datasets from several locations, 

including clinics and hospitals, to guarantee a varied and 
accurate representation of patient information. 

2) Data Preprocessing 
Make sure the data is compatible across multiple entities 

by standardizing and normalizing it. Take care of any data 
discrepancies or missing values. 

I. Model Training and Aggregation 

1) Local Model Training 
Implement a standard machine learning algorithm (e.g., 

neural network) for training local models on each entity's 
data. 
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Optimize model hyper parameters to achieve the best 
performance for each local dataset. 

Each healthcare entity Trains a local model on its data. 
Let represent the dataset of entity . The objective is to 
minimize a local loss function. , where denotes the 
model parameters. 

 

After training, each entity  computes its local model 
update  as the difference between the updated model 
parameters  and the initial parameters  

 

2) Blockchain Integration 
Each entity submits its trained model updates to the 

blockchain. The updates are stored in a transparent and 
tamper-proof manner. 

Smart contracts verify the authenticity and validity of the 
updates before proceeding with aggregation.  

Each entity  submits its local model update To the 
blockchain. These updates are recorded in a decentralized, 
tamper-proof ledger. Let  represent the blockchain and  
denote the transaction containing  : 

 

3) SMPC-Based Aggregation 
Implement SMPC protocols to aggregate the model 

updates securely. Use secret sharing or homomorphic 
encryption to combine updates without revealing individual 
contributions.  

Secure Multi-Party Computation (SMPC) aims to 
securely aggregate the local model updates from all entities 
without revealing individual updates. Let  be the number of 

entities. The global model update Is computed as: 

 

Using SMPC protocols, each entity  shares its local 
update  in a secure manner. For simplicity, let's represent 
the secure aggregation process using secret sharing or 
homomorphic encryption. Let  denote the secret share 
of  : 

 

J. Attack Simulation and Mitigation 

1) Poisoning Attack Simulation 
Simulate various poisoning attacks by injecting malicious 

data into the training process of selected entities. Analyze the 
impact of these attacks on the global model’s performance. 

To simulate poisoning attacks, we introduce malicious 
updates  into the training process. Let Be the number 
of malicious entities, and their updates are denoted by 

 : 

 

Robust aggregation techniques such as median 
aggregation or trimmed means can be employed to mitigate 
the impact of poisoning attacks. For instance, the median 
aggregation is defined as: 

 

2) Mitigation Techniques 
Develop and implement strategies to detect and mitigate 

poisoning attacks. These may include anomaly detection 
methods, robust aggregation techniques, and outlier filtering. 

K. Evaluation and Analysis 

1) Evaluation Metrics 
Evaluate the performance of the proposed framework 

using metrics such as accuracy, precision, recall, and F1-
score. Assess the system's robustness against poisoning 
attacks by comparing the performance with and without 
attacks.  

The performance of the global model is evaluated using 
standard metrics. Let  be the actual labels and  be the 
predicted labels for the data sample  : 

 

 

 

 

Where TP, FP, and FN represent true positives, false 
positives, and false negatives, respectively. 

2) Computational Overhead 
Measure the computational overhead introduced by 

blockchain integration and SMPC protocols. Analyze the 
trade-offs between security, privacy, and efficiency. 

3) Real-World Applicability 
Conduct case studies to evaluate the framework's 

practical applicability in real-world healthcare settings. 
Gather feedback from participating entities to refine and 
improve the system. 

This comprehensive methodology ensures that our 
proposed framework is rigorously designed, implemented, 
and evaluated. It addresses security and privacy concerns 
while maintaining high performance in healthcare federated 
learning systems. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

To evaluate the effectiveness of our proposed 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT)                          
Vol 24 Issue 12, DEC, 2024 

ISSN No: 2250-3676   www.ijesat.com Page | 6  

 

framework, we conducted extensive experiments using 

healthcare datasets from multiple sources. The datasets 

included diverse patient records with attributes relevant to 

diagnosis and treatment. We implemented a federated 

learning setup where each healthcare entity trained a local 

model on its subset of data. The model updates were then 

submitted to the blockchain, and SMPC protocols were used 

for secure aggregation. We simulated poisoning attacks by 

injecting malicious updates into the training process of 

selected entities. 

B. Evaluation Metrics 

We used standard evaluation metrics such as accuracy, 

precision, recall, and F1-score to measure the global model's 

performance. Additionally, we assessed the computational 

overhead introduced by the blockchain integration and 

SMPC protocols. We evaluated the framework's robustness 

against poisoning attacks by comparing the global model's 

performance with and without attacks. 

C. Results 

1) Model Performance 

The performance of the global model trained using our 

proposed framework was evaluated against the baseline 

federated learning model. As shown in Table 2, the 

proposed framework achieved higher accuracy, precision, 

recall, and F1-score compared to the baseline model, 

indicating the effectiveness of our approach in improving 

model performance. 

TABLE I.  PERFORMANCE COMPARISON OF THE BASELINE 

FEDERATED LEARNING MODEL AND THE PROPOSED FRAMEWORK 

Metric Baseline Federated Learning Proposed Framework 

Accuracy 0.9 0.92 

Precision 0.88 0.9 

Recall 0.89 0.91 

F1-Score 0.885 0.905 

 
2) 2. Robustness Against Poisoning Attacks 

The proposed framework's robustness against poisoning 

attacks was assessed by comparing its performance to that 

of the baseline model under attack conditions. Table 3 

shows that while the baseline model's performance 

significantly deteriorated in the presence of poisoning 

attacks, our proposed framework maintained high accuracy, 

precision, recall, and F1-score. This demonstrates the 

robustness of our framework in mitigating the impact of 

adversarial attacks. 

TABLE II.  PERFORMANCE COMPARISON OF THE BASELINE 

FEDERATED LEARNING MODEL AND THE PROPOSED FRAMEWORK IN THE 

PRESENCE OF POISONING ATTACKS 

Metric Baseline FL (with attack) 
Proposed Framework 

(with attack) 

Accuracy 0.75 0.89 

Precision 0.73 0.87 

Recall 0.74 0.88 

F1-Score 0.735 0.875 

3) Computational Overhead 
The computational overhead introduced by integrating 

blockchain and SMPC protocols was evaluated. As shown in 
Table 4, the proposed framework incurred a 20% increase in 
training time compared to the baseline federated learning 
model. While this overhead is significant, it is justified by 
the enhanced security and privacy benefits provided by our 
framework. 

TABLE III.  COMPUTATIONAL OVERHEAD COMPARISON OF THE 

BASELINE FEDERATED LEARNING MODEL AND THE PROPOSED FRAMEWORK. 

Metric 
Baseline Federated 

Learning 

Proposed 

Framework 

Training Time 

(mins) 
50 60 

Overhead (%) 0 20 

 
4) Discussion 

The results of our experiments highlight several key 
advantages of the proposed framework. First, integrating 
blockchain technology provides a transparent and immutable 
record of model updates, enhancing trust and accountability 
among participating healthcare entities. Second, using SMPC 
for secure aggregation ensures that sensitive data remains 
confidential, addressing privacy concerns inherent in 
federated learning. Third, robust aggregation techniques 
effectively mitigate the impact of poisoning attacks, 
maintaining the reliability and accuracy of the global model. 

 

Fig. 2. Comparative analysis of the ML approaches 

However, the computational overhead introduced by 
blockchain and SMPC protocols needs to be considered, 
especially in large-scale deployments. Future work could 
explore optimization strategies to reduce this overhead while 
preserving the benefits of security and privacy. Additionally, 
real-world case studies in diverse healthcare settings would 
provide further insights into the proposed framework's 
practical applicability and scalability. 

In conclusion, our blockchain-based federated learning 
framework with SMPC offers a promising solution for 
secure, privacy-preserving, and robust machine learning in 
healthcare systems. It addresses critical challenges such as 
data privacy, model integrity, and resilience against 
adversarial attacks, paving the way for more trustworthy AI 
applications in the healthcare domain. 

V. CONCLUSION 

This paper presents a novel framework that integrates 
blockchain technology, federated learning (FL), and secure 
multi-party computation (SMPC) to enhance the security, 
privacy, and robustness of machine learning applications in 
healthcare systems. Our approach addresses several critical 
challenges in deploying FL in healthcare, including data 
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privacy, model integrity, and resilience against poisoning 
attacks. Our experimental results demonstrate that the 
proposed framework significantly improves model 
performance, achieving higher accuracy, precision, recall, 
and F1-score than traditional federated learning models. 
Integrating blockchain technology provides a transparent and 
immutable ledger for model updates, fostering trust and 
accountability among participating entities. Furthermore, 
using SMPC ensures that individual data contributions 
remain confidential during aggregation, thereby preserving 
privacy. 

Importantly, our framework shows remarkable 
robustness against poisoning attacks. The proposed solution 
effectively mitigates the adverse effects of malicious updates 
by employing robust aggregation techniques, maintaining 
high model performance even in adversarial scenarios. This 
robustness is crucial for deploying trustworthy AI 
applications in healthcare, where the consequences of 
compromised models can be severe. However, the 
computational overhead introduced by the integration of 
blockchain and SMPC protocols, while manageable, 
highlights the need for optimization strategies. Future 
research could focus on reducing this overhead to enhance 
the framework's scalability. Additionally, real-world case 
studies in diverse healthcare settings would provide valuable 
insights into the practical implementation and effectiveness 
of the proposed solution. 

In conclusion, our blockchain-based federated learning 
framework with SMPC significantly advances secure, 
privacy-preserving, and robust machine learning for 
healthcare systems. It addresses key challenges and paves the 
way for deploying more trustworthy AI applications in the 
healthcare domain, ultimately contributing to improved 
patient outcomes and the overall quality of healthcare 
services. 
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